
Increasing Visualization and Interaction in the Automata
Theory Course

Ted Hung and Susan H� Rodger�

Computer Science Department

Duke University

Durham� NC �������	�


rodger�cs�duke�edu

Abstract

In this paper we describe how to increase the visual�
ization and interaction in the automata theory course
through the use of the tools JFLAP and P�at�e� We also
describe new features in these tools that allow addi�
tional visualization and interaction� New features in
JFLAP include the addition of regular expressions and
exploring their conversion from and to nondeterministic
�nite automata �NFA�	 and increasing the interaction in
the conversion of automata to grammars� New features
in P�at�e include the display of a parse tree while parsing
unrestricted grammars	 and improved interaction with
parsing and the transformation of grammars�

� Introduction

Many of the concepts and proofs studied in an automata
theory course �or the early foundations in a compiler
course� can easily be visualized and interacted with�
The concepts include drawing and simulating theoret�
ical machines and showing the derivations and parse
trees for strings accepted by grammars� The proofs in�
clude construction type proofs where one representation
of a language is converted to another representation	
such as proving that context�free grammars �CFG� and
pushdown automata �PDA� both represent context�free
languages�

�The work of this author is supported by the Na�
tional Science Foundation�s Division of Undergraduate Ed�
ucation through grant DUE�������	 and by the National
Science Foundation�s Computer and Information Science

 Engineering Directorate through grant CISE���	����


Visualization provides students with an alternative view
in addition to the theoretical representation that is usu�
ally presented in textbooks� Furthermore	 interaction
allows students to experiment with the concepts and
proofs and to receive feedback� Studies in the area of
algorithms 
�� show the need for students to have an al�
ternative visual representation they can interact with�

It is common for automata theory textbooks to start by
visualizing the simple concepts	 and then not visualize
the more complicated concepts� For example	 almost all
such textbooks visualize the �nite automaton	 but fewer
visualize the Turing Machine and even fewer visualize
the pushdown automaton� The textbooks all visualize
parse trees for context�free grammars� There appears to
be no similar visualization for unrestricted grammars�

We have used several tools in the automata theory
course at Duke to convert the course from a lecture
only format with written exercises to a more interactive
lecture format with interactive lab and homework ex�
ercises� In this paper we describe the new features of
tools JFLAP 

� and P�at�e 
��	 and how these tools can
be integrated into the automata theory course�

In Section � we describe JFLAP and its new features
in Section 
� In Section � we describe P�at�e and its new
features in Section �� Section � describes how these
tools and others are used to transform the automata
theory course into an interactive and visual course� We
conclude in Section ��

� JFLAP

JFLAP �Java Formal Languages and Automata Pack�
age� is a tool for creating and simulating several versions
of automata and for converting representations of lan�
guages from one form to another� The versions of au�
tomata supported include �nite automata	 pushdown
automata	 ��tape Turing machines and ��tape Turing
machines� The user creates a graph representing a tran�
sition diagram	 labels the transitions	 enters an input	
and then steps through the execution of the machine�
JFLAP allows one to create nondeterministic machines	



with three choices for execution	 a fast mode that gives
the answer	 a step mode that steps through an anima�
tion	 and a multiple input mode to test several strings
at the same time in fast mode�

In JFLAP�s conversion mode	 one can convert a rep�
resentation of a language into another representation
of the language� The regular language transformations
supported are converting an NFA to a DFA	 a DFA to
a minimum state DFA	 an NFA to a regular grammar	
and a regular grammar to an NFA� The context�free
language transformations supported are converting an
NPDA to a CFG	 and three algorithms for converting a
CFG to an NPDA�

� New Features in JFLAP

The new features in JFLAP include regular expressions	
the conversion of regular expressions to NFA	 the con�
version of NFA to regular expressions	 steps added to
the conversions of automata to grammars that previ�
ously just gave the answer	 and an expanded help sec�
tion now in html format�

With these new features in JFLAP	 one can now convert
any representation of a regular language into another
representation and either create the new representation
with help or watch an animation step through its cre�
ation� Figure � shows the �ow of possible conversions
for regular languages�

Figure �� Regular Language Conversions

��� Regular Expressions

In the regular expression to NFA conversion	 the user
�rst enters a regular expression and selects the Create
FSA option� An NFA drawing window appears and the
user has three choices� The user can either build the
complete NFA	 build the NFA in stages with help	 or
have the NFA shown� In building the NFA	 the user
must follow the algorithm explained in the help section
of JFLAP	 as this particular algorithm is checked for
correctness� In the stage building choice	 the user is
given pieces of the NFA and asked to connect them�
For example	 Figure � shows that at one stage in the
regular expression to NFA conversion for ab

�
a�bb�a��	

the user would be given an NFA for b� and an NFA for
a and would modify them to create the NFA for b

�
a�

The NFA built following the algorithm is most likely
far from the minimal solution since many lambda arcs

are added� However	 once built other conversions can
convert the NFA into a DFA and then a minimal state
DFA�

Figure �� Regular Expression to NFA in JFLAP

In the NFA to regular expression conversion	 a recursive
formula which is a slight modi�cation from 
�� is used�
The user starts with an NFA	 and then enters the start�
ing recursive formula� A table is then displayed showing
all the formulas that must be calculated� Since �lling
out the formulas is a bit tedious and straight forward	
the user can choose to either have the formulas all �lled
out	 or step through the �lling out of the formulas� At
the bottom of recursion and on the way back out of
recursion	 the formulas are replaced by regular expres�
sions� The �rst expressions are fairly simple	 and the
user can either type them in or have them displayed�
Later formulas can result in rather long regular expres�
sions� The user is asked to simplify these regular ex�
pressions�

Here are some of the rules that are used in the simpli��
cations of regular expressions� Not all rules are shown�
The � and fg represent lambda and the empty set�

a � �� � a

a�� � ��

a� � a

���a�	 � a	

���a�a	 � a	

a � a � a

b � a	b � a	b

For example	 Figure � shows part of the working win�
dow of the conversion of the NFA shown in Figure 
 to
a regular expression� The notation R�a�b�c� represents
the regular expression between states a and b without
going through a state number higher than c� In Fig�
ure �	 the regular expressions for the bottom four for�
mulas R������� through R������� have already been cal�
culated� Currently the formula R�������	 the �rst item
highlighted	 is under calculation� Since the components
of its right�hand side have already been calculated	 the
line immediately below �lls them in with their regular
expressions� Other highlighted lines show where these



regular expressions come from� At the bottom of the
window	 the user types in the simpli�cation for the reg�
ular expression listed under R�������� Figure � shows
the �nal resulting expression several steps later that cor�
responds to the DFA in Figure 
�

Figure 
� A DFA in JFLAP

Figure �� Regular Expression Conversion in JFLAP

Figure �� Regular Expression Result in JFLAP

��� Conversions to Grammars

In JFLAP	 the user can convert an NFA to a regu�
lar grammar	 and an NPDA to a context�free gram�
mar� Previously	 the conversions of automata to gram�
mars showed the resulting grammar with no intermedi�
ate steps� In the new version	 the user steps through
the conversion� The conversion highlights each arc in
the automaton	 one by one	 showing the corresponding
grammar rules for that arc� At the completion	 the com�
plete grammar is then shown in one window unless it is
too large� The user can then either save the grammar
or continue to convert the grammar to other represen�
tations�

� P�at�e

In this section we brie�y describe the previous version
of P�at�e	 and in the next section describe the new fea�
tures added to P�at�e� P�at�e is a parser for restricted
and unrestricted grammars and a grammar transformer
from a context�free grammar to Chomsky Normal Form
�CNF�� Given a grammar and an input string	 the
parser is an exhaustive search parser that builds a
derivation tree �not displayed� of all possible deriva�
tions in a breadth��rst manner� Some pruning of nodes
is done to speed up the search� Once a derivation is
found	 the user can choose to display the derivation in
textual format or in the form of a parse tree �for re�
stricted grammars only�� Alternatively	 a message may
indicate that the string is not in the language of the
grammar�

In the grammar transformer part of P�at�e	 one enters
a CFG and then through a series of steps converts the
grammar into CNF� The steps include removing lambda
productions	 unit productions	 and useless productions�
At each step an equivalent grammar is created�

� New Features in P�at�e

The new features in P�at�e include the visualization and
animation of a parse tree for unrestricted grammars	
improved interaction in both the parsing and grammar
transformation	 and an expanded help section now in
html format�

��� Parse Tree for Unrestricted Grammar

It is common for automata theory textbooks to show
a parse tree for restricted grammars	 but after looking
through over a dozen textbooks we were not able to
locate one that followed up by showing a parse tree for
an unrestricted grammar� The di�culty in displaying
such a parse tree results from the fact that the left�
hand side of a rule in an unrestricted grammar contains
both variables and terminals and can replace them or
switch their ordering� In Figure � rules 
 through � are
in this format� In drawing such a parse tree	 terminals
produced in a rule may not be part of the �nal string	
or they may be moved to another location in the tree�

Our parse tree works in a step mode in the following
way� The components of the left�hand side must be ad�
jacent	 however they may be on di�erent levels of the
current parse tree� Our tool drops these components
down to the same level by extending their branches	
and highlights them in a box to indicate they are be�
ing replaced� The right�hand side of a rule works the
same as in a parse tree for a restricted grammar� For
example	 Figure � shows the partial parse tree for the
derivation of the string aabbcc from the grammar in



Figure �� An Unrestricted Grammar in P�at�e

Figure �� In this case the �rst left�hand side with mul�
tiple items abB has all the items on the same line� A
shaded box is drawn around them and they are replaced
with aBb� Figure � shows the completed parse tree three
steps later� Both the a and b from the second row of
Figure � have been extended down to be used in the
rules transforming aB and baB respectively�

Figure �� Partial Parse Tree in P�at�e

��� Improved Interaction in P�at�e

In P�at�e	 both the parser and the grammar transformer
now allow one to step through the derivations in forward
and reverse directions� In the parser	 both the textual
output and the parse tree output can either show the
answer or step through the construction of the answer�
In both cases	 the answer is determined �rst and then
the starting point of the derivation or �rst node in the
parse tree is shown� Figure � shows the partial tex�
tual derivation of the string aabbcc corresponding to
Figure ��

In the grammar transformer	 many of the transforma�

Figure �� Complete Parse Tree in P�at�e

Figure �� Partial Derivation in P�at�e

tions include deleting a few of the existing rules	 and
adding replacement rules� In the previous version of
P�at�e	 the user had to type in the complete new gram�
mar	 a bit tedious since many rules are typed in again
unchanged� In the new version	 the existing grammar is
shown and the user selects rules to delete by highlight�
ing them and then types in the new replacement rules�
A copy of the previous grammar is now shown beside the
grammar the user is constructing in the same window�
Figure �� shows a portion of the Lambda Removal win�
dow from P�at�e� The grammar on the left is the modi�ed
grammar with no lambda productions� The grammar
on the right is the previous grammar� The symbol � is
lambda�

Figure ��� Part of Lambda Removal in P�at�e



��� Other Improvements

File format for JFLAP and P�at�e is now the same� Re�
stricted grammars created in one tool can also be used
in the other� Many of the interfaces in P�at�e such as the
grammar input window and the graphical windows in
the grammar transformations are now similar to those in
JFLAP	 making it easier to switch between these tools�

� Using Tools To Teach

For many years now we have used JFLAP	 P�at�e and
other tools in teaching the automata theory course CPS
��� at Duke to increase the visualization and interaction
in this course� In 

� we give student comments showing
the e�ectiveness of these tools� We have used these
tools with the textbooks 
�	 ��	 but they are designed
to work with most automata theory textbooks� Here we
describe how to integrate these tools and the impact the
new additions to these tools will have on this course�

We currently use JFLAP and P�at�e during lectures to
introduce topics	 to work examples	 and to illustrate
the easy use of the tools� For example	 we have found
that some students did not realize that they could move
states around in JFLAP unless they saw us do it� By
working examples in class and saving them in �les	 stu�
dents can reproduce the same examples later� Students
have used these tools in labs	 for homework assignments	
to try additional examples and to study for exams�

JFLAP and P�at�e are instructional tools that work best
with small examples �dfa with �� or fewer states	 gram�
mar with � or fewer rules�� One can construct much
larger examples	 however those examples can become
tedious to work with� Examples should be constructed
so the student can do enough to understand the con�
cept or algorithm	 and then use the show features to
complete the rest of the algorithm� One especially has
to be careful with example sizes in the transformations
as the new representations can be quite large� For ex�
ample the equivalent DFA from an NFA could grow to
an exponential number of states�

As another example of size restrictions	 many students
do not understand that some things are not computable
on a computer due to their solution growth rate� The
exhaustive search parser in P�at�e is simple to understand
and one can tell students that it can take a long time	
but when you type in a grammar and input string during
lecture and select parse and wait	 they really begin to
question why it is taking so long� P�at�e informs them of
the size of the derivation tree and tells them this string
may take too long to derive� This interaction with P�at�e
has much more impact then words from an instructor�

The additional step interaction added to both P�at�e and
JFLAP makes the tools more useful by the instructor

during lecture� They can now step through an algorithm
and ask for feedback on what is going to happen next�
For example	 in the conversion of an NFA to a regular
grammar	 the instructor can ask the students what the
rules for a particular arc are	 and then have JFLAP
display the answer� The new interface in P�at�e in the
grammar transformation windows makes it simpler to
change a grammar	 and thus easier to demo in class�

	 Conclusion

JFLAP and P�at�e are tools for integrating visualization
and interaction into an automata theory course� The
addition of regular expressions to JFLAP allows one
to now take one representation of a regular language
and convert it to any of the other representations and
even back again� The addition of a parse tree for un�
restricted grammars in P�at�e allows one to continue the
visualization of parse trees as they learn di�erent types
of grammars� The increased interaction in both of these
tools allows one to focus on the steps of algorithms�

JFLAP	 P�at�e and other tools we have developed are
available free� The software and more information
about them are available on

http
��www�cs�duke�edu��rodger�tools

Acknowledgement JFLAP and P�at�e would not be
possible without the work of Dan Caugherty	 Mark
Losacco	 Madga Procopiuc	 Tavi Procopiuc	 Eric Gra�
mond	 Anya Bilska and Jason Salemme�

References


�� Badre	 A�	 Lewis	 C�	 and Stasko	 J� Empirically
evaluating the use of animations to teach algorithms�
Proceedings of the ���	 IEEE Symposium on Visual
Languages ������	 ������


�� Bilska	 A� O�	 Leider	 K� H�	 Procopiuc	 M�	 Pro�
copiuc	 O�	 Rodger	 S� H�	 Salemme	 J� R�	 and
Tsang	 E� A collection of tools for making automata
theory and formal languages come alive� Twenty

eighth SIGCSE Technical Symposium on Computer
Science Education ������	 ������



� Gramond	 E�	 and Rodger	 S� H� Using j�ap to
interact with theorems in automata theory� Thir

tieth SIGCSE Technical Symposium on Computer
Science Education ������	 

��
���


�� Lewis	 H�	 and Papadimitriou	 C� Elements of the
Theory of Computation� Second Edition� Prentice
Hall	 �����


�� Linz	 P� An Introduction to Formal Languages and
Automata� Second Edition� D� C� Heath and Com�
pany	 �����


