Increasing Visualization and Interaction in the Automata
Theory Course

Ted Hung and Susan H. Rodger*
Computer Science Department
Duke University
Durham, NC 27708-0129
rodger@cs.duke.edu

Abstract

In this paper we describe how to increase the visual-
ization and interaction in the automata theory course
through the use of the tools JFLAP and Paté. We also
describe new features in these tools that allow addi-
tional visualization and interaction. New features in
JFLAP include the addition of regular expressions and
exploring their conversion from and to nondeterministic
finite automata (NFA), and increasing the interaction in
the conversion of automata to grammars. New features
in Paté include the display of a parse tree while parsing
unrestricted grammars, and improved interaction with
parsing and the transformation of grammars.

1 Introduction

Many of the concepts and proofs studied in an automata
theory course (or the early foundations in a compiler
course) can easily be visualized and interacted with.
The concepts include drawing and simulating theoret-
ical machines and showing the derivations and parse
trees for strings accepted by grammars. The proofs in-
clude construction type proofs where one representation
of a language is converted to another representation,
such as proving that context-free grammars (CFG) and
pushdown automata (PDA) both represent context-free
languages.

*The work of this author is supported by the Na-
tional Science Foundation’s Division of Undergraduate Ed-
ucation through grant DUE-9752583 and by the National
Science Foundation’s Computer and Information Science
& Engineering Directorate through grant CISE-9634475.

Visualization provides students with an alternative view
in addition to the theoretical representation that is usu-
ally presented in textbooks. Furthermore, interaction
allows students to experiment with the concepts and
proofs and to receive feedback. Studies in the area of
algorithms [1] show the need for students to have an al-
ternative visual representation they can interact with.

It is common for automata theory textbooks to start by
visualizing the simple concepts, and then not visualize
the more complicated concepts. For example, almost all
such textbooks visualize the finite automaton, but fewer
visualize the Turing Machine and even fewer visualize
the pushdown automaton. The textbooks all visualize
parse trees for context-free grammars. There appears to
be no similar visualization for unrestricted grammars.

We have used several tools in the automata theory
course at Duke to convert the course from a lecture
only format with written exercises to a more interactive
lecture format with interactive lab and homework ex-
ercises. In this paper we describe the new features of
tools JFLAP [3] and Paté [2], and how these tools can
be integrated into the automata theory course.

In Section 2 we describe JFLAP and its new features
in Section 3. In Section 4 we describe Paté and its new
features in Section 5. Section 6 describes how these
tools and others are used to transform the automata
theory course into an interactive and visual course. We
conclude in Section 7.

2 JFLAP

JFLAP (Java Formal Languages and Automata Pack-
age) is a tool for creating and simulating several versions
of automata and for converting representations of lan-
guages from one form to another. The versions of au-
tomata supported include finite automata, pushdown
automata, 1-tape Turing machines and 2-tape Turing
machines. The user creates a graph representing a tran-
sition diagram, labels the transitions, enters an input,
and then steps through the execution of the machine.
JFLAP allows one to create nondeterministic machines,

with three choices for execution, a fast mode that gives
the answer, a step mode that steps through an anima-
tion, and a multiple input mode to test several strings
at the same time in fast mode.

In JFLAP’s conversion mode, one can convert a rep-
resentation of a language into another representation
of the language. The regular language transformations
supported are converting an NFA to a DFA, a DFA to
a minimum state DFA, an NFA to a regular grammar,
and a regular grammar to an NFA. The context-free
language transformations supported are converting an
NPDA to a CFG, and three algorithms for converting a
CFG to an NPDA.

3 New Features in JFLAP

The new features in JFLAP include regular expressions,
the conversion of regular expressions to NFA, the con-
version of NFA to regular expressions, steps added to
the conversions of automata to grammars that previ-
ously just gave the answer, and an expanded help sec-
tion now in html format.

With these new features in JFLAP, one can now convert
any representation of a regular language into another
representation and either create the new representation
with help or watch an animation step through its cre-
ation. Figure 1 shows the flow of possible conversions
for regular languages.

MNFA DFA

Minimal DFA

Regular Grammar | Regular Expression

Figure 1: Regular Language Conversions

3.1 Regular Expressions

In the regular expression to NFA conversion, the user
first enters a regular expression and selects the Create
FSA option. An NFA drawing window appears and the
user has three choices. The user can either build the
complete NFA, build the NFA in stages with help, or
have the NFA shown. In building the NFA, the user
must follow the algorithm explained in the help section
of JFLAP, as this particular algorithm is checked for
correctness. In the stage building choice, the user is
given pieces of the NFA and asked to connect them.
For example, Figure 2 shows that at one stage in the
regular expression to NFA conversion for ab*a(bb*a)*,
the user would be given an NFA for b* and an NFA for
a and would modify them to create the NFA for b*a.
The NFA built following the algorithm is most likely
far from the minimal solution since many lambda arcs

are added. However, once built other conversions can
convert the NFA into a DFA and then a minimal state
DFA.

Create the Regular Expression: b*a

Figure 2: Regular Expression to NFA in JFLAP

In the NFA to regular expression conversion, a recursive
formula which is a slight modification from [4] is used.
The user starts with an NFA, and then enters the start-
ing recursive formula. A table is then displayed showing
all the formulas that must be calculated. Since filling
out the formulas is a bit tedious and straight forward,
the user can choose to either have the formulas all filled
out, or step through the filling out of the formulas. At
the bottom of recursion and on the way back out of
recursion, the formulas are replaced by regular expres-
sions. The first expressions are fairly simple, and the
user can either type them in or have them displayed.
Later formulas can result in rather long regular expres-
sions. The user is asked to simplify these regular ex-
pressions.

Here are some of the rules that are used in the simplifi-
cations of regular expressions. Not all rules are shown.
The ! and {} represent lambda and the empty set.

a+{}=a
a{} = {}

a! = a
('+a)* = ax
('+a)ax = ax
a+a-=
b + axb

o

a*b

For example, Figure 4 shows part of the working win-
dow of the conversion of the NFA shown in Figure 3 to
a regular expression. The notation R(a,b,c) represents
the regular expression between states ¢ and b without
going through a state number higher than c¢. In Fig-
ure 4, the regular expressions for the bottom four for-
mulas R(2,1,1) through R(0,1,0) have already been cal-
culated. Currently the formula R(2,2,1), the first item
highlighted, is under calculation. Since the components
of its right-hand side have already been calculated, the
line immediately below fills them in with their regular
expressions. Other highlighted lines show where these

regular expressions come from. At the bottom of the
window, the user types in the simplification for the reg-
ular expression listed under R(2,2,1). Figure 5 shows
the final resulting expression several steps later that cor-
responds to the DFA in Figure 3.

Figure 3: A DFA in JFLAP

R{1, 1, 13 =R{1, 1, 0} + R({1, 0, 0} RO, 0, O)* R0, 1, 03
Ri1, 2, 13 =R({1, 2, 0} + R({1, 0, 0} R0, 0, 0)* R0, 2, 03
RiZ, 2, 10 =R(2 2, 0} + B2, 0, 0} R0, 0, (0, 2, 0}
= I-Hi¥
=7

R(Z, 1, 13 =R(2, 1, 0y + R(Z, 0,) RO, 0, 03* RO, 1, O}

Rz, 2 1=]

Figure 4: Regular Expression Conversion in JFLAP

RiD, 2, 3 =R(0, 2, 20+ R0, 2, 2) R(Z2, 2, 2)* R(2, 2, 20
= gb*a+ab*all+bb*a)*(1+bb*a)
= gb*alb b*a)*

Figure 5: Regular Expression Result in JFLAP

3.2 Conversions to Grammars

In JFLAP, the user can convert an NFA to a regu-
lar grammar, and an NPDA to a context-free gram-
mar. Previously, the conversions of automata to gram-
mars showed the resulting grammar with no intermedi-
ate steps. In the new version, the user steps through
the conversion. The conversion highlights each arc in
the automaton, one by one, showing the corresponding
grammar rules for that arc. At the completion, the com-
plete grammar is then shown in one window unless it is
too large. The user can then either save the grammar
or continue to convert the grammar to other represen-
tations.

4 Pateé

In this section we briefly describe the previous version
of Paté, and in the next section describe the new fea-
tures added to Paté. Paté is a parser for restricted
and unrestricted grammars and a grammar transformer
from a context-free grammar to Chomsky Normal Form
(CNF). Given a grammar and an input string, the
parser is an exhaustive search parser that builds a
derivation tree (not displayed) of all possible deriva-
tions in a breadth-first manner. Some pruning of nodes
is done to speed up the search. Once a derivation is
found, the user can choose to display the derivation in
textual format or in the form of a parse tree (for re-
stricted grammars only). Alternatively, a message may
indicate that the string is not in the language of the
grammar.

In the grammar transformer part of Paté, one enters
a CFG and then through a series of steps converts the
grammar into CNF. The steps include removing lambda
productions, unit productions, and useless productions.
At each step an equivalent grammar is created.

5 New Features in Paté

The new features in Paté include the visualization and
animation of a parse tree for unrestricted grammars,
improved interaction in both the parsing and grammar
transformation, and an expanded help section now in
html format.

5.1 Parse Tree for Unrestricted Grammar

It is common for automata theory textbooks to show
a parse tree for restricted grammars, but after looking
through over a dozen textbooks we were not able to
locate one that followed up by showing a parse tree for
an unrestricted grammar. The difficulty in displaying
such a parse tree results from the fact that the left-
hand side of a rule in an unrestricted grammar contains
both variables and terminals and can replace them or
switch their ordering. In Figure 6 rules 3 through 6 are
in this format. In drawing such a parse tree, terminals
produced in a rule may not be part of the final string,
or they may be moved to another location in the tree.

Our parse tree works in a step mode in the following
way. The components of the left-hand side must be ad-
jacent, however they may be on different levels of the
current parse tree. Our tool drops these components
down to the same level by extending their branches,
and highlights them in a box to indicate they are be-
ing replaced. The right-hand side of a rule works the
same as in a parse tree for a restricted grammar. For
example, Figure 7 shows the partial parse tree for the
derivation of the string aabbcc from the grammar in

File Options Help

E- — | absg

28 —|aBg
3 |abE —|aBY
£ |wB | —>|Bai
s |aH = |ad

e el |8

Parse | Transfonm Grammar

Figure 6: An Unrestricted Grammar in Paté

Figure 6. In this case the first left-hand side with mul-
tiple items abB has all the items on the same line. A
shaded box is drawn around them and they are replaced
with aBb. Figure 8 shows the completed parse tree three
steps later. Both the a and b from the second row of
Figure 7 have been extended down to be used in the
rules transforming aB and baB respectively.

Figure 7: Partial Parse Tree in Paté

5.2 Improved Interaction in Paté

In Paté, both the parser and the grammar transformer
now allow one to step through the derivations in forward
and reverse directions. In the parser, both the textual
output and the parse tree output can either show the
answer or step through the construction of the answer.
In both cases, the answer is determined first and then
the starting point of the derivation or first node in the
parse tree is shown. Figure 9 shows the partial tex-
tual derivation of the string aabbcc corresponding to
Figure 7.

In the grammar transformer, many of the transforma-

Figure 8: Complete Parse Tree in Paté

aabbee is part of language.
The derivation tree contained 31 nodes.

Derivation: Productions Used:
§==
§—=ah&c
==ahSc
S—=abBc
=z=ahabBcc
ahB-=aBh
=x=ahaBhbce

Figure 9: Partial Derivation in Paté

tions include deleting a few of the existing rules, and
adding replacement rules. In the previous version of
Paté, the user had to type in the complete new gram-
mar, a bit tedious since many rules are typed in again
unchanged. In the new version, the existing grammar is
shown and the user selects rules to delete by highlight-
ing them and then types in the new replacement rules.
A copy of the previous grammar is now shown beside the
grammar the user is constructing in the same window.
Figure 10 shows a portion of the Lambda Removal win-
dow from Paté. The grammar on the left is the modified
grammar with no lambda productions. The grammar
on the right is the previous grammar. The symbol) is
lambda.

Step 2: W odify the grammar to remove the lambdas

M ewr Granunar Initial Grarmmar
S-=45h S—=A45h
8-=B 5—=B

B-=h& B-=h&
A-zad A-—zah

A-=a P

BE-=hb

G-=5&b

Figure 10: Part of Lambda Removal in Paté

5.3 Other Improvements

File format for JFLAP and Paté is now the same. Re-
stricted grammars created in one tool can also be used
in the other. Many of the interfaces in Paté such as the
grammar input window and the graphical windows in
the grammar transformations are now similar to those in
JFLAP, making it easier to switch between these tools.

6 Using Tools To Teach

For many years now we have used JFLAP, Paté and
other tools in teaching the automata theory course CPS
140 at Duke to increase the visualization and interaction
in this course. In [3] we give student comments showing
the effectiveness of these tools. We have used these
tools with the textbooks [4, 5], but they are designed
to work with most automata theory textbooks. Here we
describe how to integrate these tools and the impact the
new additions to these tools will have on this course.

We currently use JFLAP and Paté during lectures to
introduce topics, to work examples, and to illustrate
the easy use of the tools. For example, we have found
that some students did not realize that they could move
states around in JFLAP unless they saw us do it. By
working examples in class and saving them in files, stu-
dents can reproduce the same examples later. Students
have used these tools in labs, for homework assignments,
to try additional examples and to study for exams.

JFLAP and Paté are instructional tools that work best
with small examples (dfa with 12 or fewer states, gram-
mar with 8 or fewer rules). One can construct much
larger examples, however those examples can become
tedious to work with. Examples should be constructed
so the student can do enough to understand the con-
cept or algorithm, and then use the show features to
complete the rest of the algorithm. One especially has
to be careful with example sizes in the transformations
as the new representations can be quite large. For ex-
ample the equivalent DFA from an NFA could grow to
an exponential number of states.

As another example of size restrictions, many students
do not understand that some things are not computable
on a computer due to their solution growth rate. The
exhaustive search parser in Paté is simple to understand
and one can tell students that it can take a long time,
but when you type in a grammar and input string during
lecture and select parse and wait, they really begin to
question why it is taking so long. Paté informs them of
the size of the derivation tree and tells them this string
may take too long to derive. This interaction with Paté
has much more impact then words from an instructor.

The additional step interaction added to both Paté and
JFLAP makes the tools more useful by the instructor

during lecture. They can now step through an algorithm
and ask for feedback on what is going to happen next.
For example, in the conversion of an NFA to a regular
grammar, the instructor can ask the students what the
rules for a particular arc are, and then have JFLAP
display the answer. The new interface in Paté in the
grammar transformation windows makes it simpler to
change a grammar, and thus easier to demo in class.

7 Conclusion

JFLAP and Péaté are tools for integrating visualization
and interaction into an automata theory course. The
addition of regular expressions to JFLAP allows one
to now take one representation of a regular language
and convert it to any of the other representations and
even back again. The addition of a parse tree for un-
restricted grammars in Paté allows one to continue the
visualization of parse trees as they learn different types
of grammars. The increased interaction in both of these
tools allows one to focus on the steps of algorithms.

JFLAP, Paté and other tools we have developed are
available free. The software and more information
about them are available on

http://wuw.cs.duke.edu/~rodger/tools

Acknowledgement JFLAP and Paté would not be
possible without the work of Dan Caugherty, Mark
Losacco, Madga Procopiuc, Tavi Procopiuc, Eric Gra-
mond, Anya Bilska and Jason Salemme.

References

[1] Badre, A., Lewis, C., and Stasko, J. Empirically
evaluating the use of animations to teach algorithms.
Proceedings of the 1994 IEEE Symposium on Visual
Languages (1994), 48-54.

[2] Bilska, A. O., Leider, K. H., Procopiuc, M., Pro-
copiuc, O., Rodger, S. H., Salemme, J. R., and
Tsang, E. A collection of tools for making automata
theory and formal languages come alive. Twenty-
eighth SIGCSE Technical Symposium on Computer
Science Education (1997), 15-19.

[3] Gramond, E., and Rodger, S. H. Using jflap to
interact with theorems in automata theory. Thir-
tieth SIGCSE Technical Symposium on Computer
Science Education (1999), 336-340.

[4] Lewis, H., and Papadimitriou, C. Elements of the
Theory of Computation, Second Edition. Prentice
Hall, 1998.

[5] Linz, P. An Introduction to Formal Languages and
Automata, Second Edition. D. C. Heath and Com-
pany, 1996.

